Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We analyze the gravity waves (GWs) from the ground to the thermosphere during 11–14 January 2016 using the nudged HI Altitude Mechanistic general Circulation Model. We find that the entrance, core and exit regions of the polar vortex jet are important for generating primary GWs and amplifying GWs from below. These primary GWs dissipate in the upper stratosphere/lower mesosphere and deposit momentum there; the atmosphere responds by generating secondary GWs. This process is repeated, resulting in medium to large‐scale higher‐order, thermospheric GWs. We find that the amplitudes of the secondary/higher‐order GWs from sources below the polar vortex jet are exponentially magnified. The higher‐order, thermospheric GWs have concentric ring, arc‐like and planar structures, and spread out latitudinally to 10 − 90°N. Those GWs with the largest amplitudes propagate against the background wind. Some of the higher‐order GWs generated over Europe propagate over the Arctic region then southward over the US to ∼15–20°N daily at ∼14 − 24 UT (∼9 − 16 LT) due to the favorable background wind. These GWs have horizontal wavelengthsλH ∼ 200 − 2,200 km, horizontal phase speedscH ∼ 165 − 260 m/s, and periodsτr ∼ 0.3 − 2.4 hr. Such GWs could be misidentified as being generated by auroral activity. The large‐scale, higher‐order GWs are generated in the lower thermosphere and propagate southwestward daily across the northern mid‐thermosphere at ∼8–16 LT withλH ∼ 3,000 km andcH ∼ 650 m/s. We compare the simulated GWs with those observed by AIRS, VIIRS/DNB, lidar and meteor radars and find reasonable to good agreement. Thus the polar vortex jet is important for facilitating the global generation of medium to large‐scale, higher‐order thermospheric GWs via multi‐step vertical coupling.more » « less
-
Abstract We analyze the gravity waves (GWs) observed by a Rayleigh lidar at the Arctic Lidar Observatory for Middle Atmosphere Research (ALOMAR) (16.08°E, 69.38°N) in Norway atz ∼ 20–85 km on 12–14 January 2016. These GWs propagate upward and downward away fromzknee = 57 and 64 km at a horizontally‐displaced location with periodsτr ∼ 5–10 hr and vertical wavelengthsλz ∼ 9–20 km. Because the hodographs are distorted, we introduce an alternative method to determine the GW parameters. We find that these GWs are medium to large‐scale, and propagate north/northwestward with intrinsic horizontal phase speeds of ∼35–65 m/s. Since the GW parameters are similar above and belowzknee, these are secondary GWs created by local body forces (LBFs) south/southeast of ALOMAR. We use the nudged HIAMCM (HIgh Altitude Mechanistic general Circulation Model) to model these events. Remarkably, the model reproduces similar GW structures over ALOMAR, withzknee = 58 and 66 km. The event #1 GWs are created by a LBF at ∼35°E, ∼60°N, andz ∼ 58 km. This LBF is created by the breaking and dissipation of primary GWs generated and amplified by the imbalance of the polar night jet below the wind maximum; the primary GWs for this event are created atz ∼ 25–35 km at 49–53°N. We also find that the HIAMCM GWs agree well with those observed by the Atmospheric InfraRed Sounder (AIRS) satellite, and that those AIRS GWs south and north of ∼50°N over Europe are mainly mountain waves and GWs from the polar vortex, respectively.more » « less
-
Abstract Multiple recent observations in the mesosphere have revealed large-scale Kelvin–Helmholtz instabilities (KHI) exhibiting diverse spatial features and temporal evolutions. The first event reported by Hecht et al. exhibited multiple features resembling those seen to arise in early laboratory shear-flow studies described as “tube” and “knot” (T&K) dynamics by Thorpe. The potential importance of T&K dynamics in the atmosphere, and in the oceans and other stratified and sheared fluids, is due to their accelerated turbulence transitions and elevated energy dissipation rates relative to KHI turbulence transitions occurring in their absence. Motivated by these studies, we survey recent observational evidence of multiscale Kelvin–Helmholtz instabilities throughout the atmosphere, many features of which closely resemble T&K dynamics observed in the laboratory and idealized initial modeling. These efforts will guide further modeling assessing the potential importance of these T&K dynamics in turbulence generation, energy dissipation, and mixing throughout the atmosphere and other fluids. We expect these dynamics to have implications for parameterizing mixing and transport in stratified shear flows in the atmosphere and oceans that have not been considered to date. Companion papers describe results of a multiscale gravity wave direct numerical simulation (DNS) that serendipitously exhibits a number of KHI T&K events and an idealized multiscale DNS of KHI T&K dynamics without gravity wave influences. Significance StatementKelvin–Helmholtz instabilities (KHI) occur throughout the atmosphere and induce turbulence and mixing that need to be represented in weather prediction and other models of the atmosphere and oceans. This paper documents recent atmospheric evidence for widespread, more intense, features of KHI dynamics that arise where KH billows are initially discontinuous, misaligned, or varying along their axes. These features initiate strong local vortex interactions described as “tubes” and “knots” in early laboratory experiments, suggested by, but not recognized in, earlier atmospheric and oceanic profiling, and only recently confirmed in newer, high-resolution atmospheric imaging and idealized modeling to date.more » « less
-
Abstract. In this paper we present an overview of measurements conducted during the WADIS-2 rocket campaign. We investigate the effect of small-scale processes like gravity waves and turbulence on the distribution of atomic oxygen and other species in the mesosphere–lower thermosphere (MLT) region. Our analysis suggests that density fluctuations of atomic oxygen are coupled to fluctuations of other constituents, i.e., plasma and neutrals. Our measurements show that all measured quantities, including winds, densities, and temperatures, reveal signatures of both waves and turbulence. We show observations of gravity wave saturation and breakdown together with simultaneous measurements of generated turbulence. Atomic oxygen inside turbulence layers shows two different spectral behaviors, which might imply a change in its diffusion properties.more » « less
-
Abstract We analyze quiet‐time data from the Gravity Field and Ocean Circulation Explorer satellite as it overpassed the Southern Andes atz≃275 km on 5 July 2010 at 23 UT. We extract the 20 largest traveling atmospheric disturbances from the density perturbations and cross‐track winds using Fourier analysis. Using gravity wave (GW) dissipative theory that includes realistic molecular viscosity, we search parameter space to determine which hot spot traveling atmospheric disturbances are GWs. This results in the identification of 17 GWs having horizontal wavelengthsλH = 170–1,850 km, intrinsic periodsτIr = 11–54 min, intrinsic horizontal phase speedscIH = 245–630 m/s, and density perturbations 0.03–7%. We unambiguously determine the propagation direction for 11 of these GWs and find that most had large meridional components to their propagation directions. Using reverse ray tracing, we find that 10 of these GWs must have been created in the mesosphere or thermosphere. We show that mountain waves (MWs) were observed in the stratosphere earlier that day and that these MWs saturated atz∼ 70–75 km from convective instability. We suggest that these 10 Gravity Field and Ocean Circulation Explorer hot spot GWs are likely tertiary (or higher‐order) GWs created from the dissipation of secondary GWs excited by the local body forces created from MW breaking. We suggest that the other GW is likely a secondary or tertiary (or higher‐order) GW. This study strongly suggests that the hot spot GWs over the Southern Andes in the quiet‐time middle winter thermosphere cannot be successfully modeled by conventional global circulation models where GWs are parameterized and launched in the troposphere or stratosphere.more » « less
An official website of the United States government
